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Aim of ITMQ is to reduce amount of multilocking in code. In real life situation, there are possibility of lock
two or more sections needed to be locked at same time. This is not impossible, but there are situations that
the lock can not be acquired. In ShareazaPlus, based on Shareaza, originally had a lot of code required
multilocking in some timings. 
 
One example is when received QueryHit, search result, from network. Adding download source from
QueryHit required to lock Transfer section. But generally all the QueryHits are received and decoded in
Network section which is on different section locking. Neighbour connections, packet buffers in are in
network section and can not unlock while they are processed, because of processing in FIFO manner and
efficiency of execution. So When any QueryHit packet comes in, need to lock transfer section in order to
add them to download as download sources. However there are some situations that transfer thread, which
locks transfer section, needs to lock network section. They are normally search sources and  PUSH/CallBack
connect requests. when both events happened at same time, unfortunately one of them has to be rejected
with lock timeout, or remove time out which cause DeadLock because each thread try to lock each other’s
main sections. 
 
One solution to this situation is to use messaging technology. Send message to other thread’s message queue
and let the receiving thread process what the sender thread want. 
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File exsistence check in SearchResult windows
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