
Processing Queued ITMQ messages

Class structure of messaging Queue

Section Lock

Pointer to first message

Pointer to last message

Base class structure of messages

Base class contains links to previous
next messages. Message defails are
class deriving this super class

Pointer to previous message

Pointer to Next message

Processing queued message

On queue
message

End queue
message message

Lock section

Create temporary
message queue in stack

Unlock section

Is pointer to first
message valid?

No

Yes

Unlink pointer to first
message and link

temporary queue’s first
pointer to first message

Unlink pointer to last
message and link

temporary queue’s last
pointer to first message

Loop to execute
messages

Loop to execute
messages

Execute message

Unlink, destruct
message and free

memory

Is temporary
queue empty?

Yes

No

Aim of ITMQ is to reduce amount of multilocking in code. In real life situation, there are possibility of lock
two or more sections needed to be locked at same time. This is not impossible, but there are situations that
the lock can not be acquired. In ShareazaPlus, based on Shareaza, originally had a lot of code required
multilocking in some timings.

One example is when received QueryHit, search result, from network. Adding download source from
QueryHit required to lock Transfer section. But generally all the QueryHits are received and decoded in
Network section which is on different section locking. Neighbour connections, packet buffers in are in
network section and can not unlock while they are processed, because of processing in FIFO manner and
efficiency of execution. So When any QueryHit packet comes in, need to lock transfer section in order to
add them to download as download sources. However there are some situations that transfer thread, which
locks transfer section, needs to lock network section. They are normally search sources and PUSH/CallBack
connect requests. when both events happened at same time, unfortunately one of them has to be rejected
with lock timeout, or remove time out which cause DeadLock because each thread try to lock each other’s
main sections.

One solution to this situation is to use messaging technology. Send message to other thread’s message queue
and let the receiving thread process what the sender thread want.

Queueing message to ITMQ

On queue message

End queue message
message

Destruct incoming
message and free

memory

Lock section

Link message

Unlock section

Is Queue
enabled?

No

Yes

Incoming QueryHit packet handling

CQueryHit

If QueryHit is for local
search result windowNo

Route QueryHit to
correct neighbor

Create ITMQ
message object

which has pointer
to QueryHit

Yes

End process to QueryHit and
return for next packet

ITMQ message
object for
Download
section.

Section executed by Network thread

Process ITMQ message

ITMQ
message
queue for
download
section

Lookup download list for
matched download item.

Create ITMQ
message object

which has pointer
to QueryHit

End process to message and
return

ITMQ message
object for GUI
section.

Section executed by Transfer thread

ITMQ
message
queue for

GUI
section

Process ITMQ message

Lookup Search result
Windows and Hit monitor

windows for Query origin of
the hit.

Destruct QueryHit
object and free up

memory.

End process to message and
return

Found matching window
and linked in pointer?

yes

No

Section executed by GUI thread

File exsistence check in SearchResult windows

GUI thread
message
queue

Section executed by GUI thread

OnHit

End OnHit

Has entry been checked
against Library and

Download?

Yes

No

Create ITMQ
message to request

existence of file
and send to Library

and Transfer
threads

Process
Queued

messages

End Process
Queued

messages

mark result as
Exist/NotExist in
Download/Library
according to reply

message

Mark search result
entry as checked

against Library and
Download

Library
thread

message
queue

Section executed by Library thread

Process
Queued

messages

End Process
Queued

messages

Create Message to
notify the file is

exist in library and
send to GUI thread

On file
Add/Remove

Create Message to
notify the file is

added/removed in
library and send to

GUI thread

End file
Add/Remove

Create Message to
notify the file is

ghost in library and
send to GUI thread

File exist in
library?

No

Yes

File is in ghost
list?

No

Yes

Are there any
same file exist?

Yes

No

Transfer
thread

message
queue

Section executed by Transfer thread

Process
Queued

messages

End Process
Queued

messages

Create Message to
notify the file is

exist in download
and send to GUI

thread

On file
Add/Remove

Create Message to
notify the file is

added/removed in
download and send

to GUI thread

End file
Add/Remove

File exist in
Downlaod?

No

Yes

